Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus.
نویسندگان
چکیده
Spine-free calretinin-immunoreactive (CR-IR) interneurons form a subpopulation of GABAergic cells in the rat hippocampus. A characteristic feature of these cells--located in all areas and layers--is the frequent dendro-dendritic and axo-dendritic contacts they form with each other. In this study we examined in detail the connectivity of these neurons by reconstructing their dendritic and axonal arbor and by identifying their postsynaptic targets. Radially running dendrites of CR-IR cells, located in different layers, intermingled into long braids. An average cell was in contact with dendrites of three to seven other CR-IR cells. Reconstruction of the dendritic trees from six consecutive sections demonstrated that at least 15 cells may participate in a dendro-dendritically connected cluster. Electron microscopical examination revealed that regularly spaced zonula adherentia connect the touching dendrites. The postsynaptic targets of CR-IR neurons have been examined using postembedding immunogold staining for GABA. CR-containing GABA-immunoreactive axons of local origin formed multiple symmetrical synaptic contacts (two to five) exclusively on GABAergic dendrites (CR-negative as well as CR-positive). Two to 10 CR-IR axons may converge onto a single CR-IR neuron, often from cells belonging to the same dendro-dendritically connected cluster. Using double immunocytochemistry, CR-IR cells were shown to heavily innervate calbindin D28k-containing interneurons and VIP-containing basket cells but avoided the parvalbumin-containing basket and axo-axonic cells. The unique connectivity of CR-IR cells may enable them to play a crucial role in the generation of synchronous, rhythmic hippocampal activity by controlling other interneurons terminating on different dendritic and somatic compartments of principal cells.
منابع مشابه
The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy
This review focuses on the vulnerability of a special interneuron type-the calretinin (CR)-containing interneurons-in temporal lobe epilepsy (TLE). CR is a calcium-binding protein expressed mainly by GABAergic interneurons in the hippocampus. Despite their morphological heterogeneity, CR-containing interneurons form a distinct subpopulation of inhibitory cells, innervating other interneurons in...
متن کاملChanges in the numbers and distribution of calretinin in the epileptic rat hippocampus.
OBJECTIVES To examine calretinin (CR)-containingObjectives: To examine cairetinin (CR)-containingnterneuronsthatdegenerate inthe hippocampus in post statusinterneurons that dege nera te in the hippocampusepilepticus (SE) ratsatdifferent time in post status epilepticus (SE) rats at different time points. METHODS This study was conducted at the Central South University, Xiangya Hospital, Hunan ...
متن کاملProlonged protein deprivation differentially affects calretinin- and parvalbumin-containing interneurons in the hippocampal dentate gyrus of adult rats.
Protein deprivation is a detrimental nutritional state that induces several deleterious changes in the rat hippocampal formation. In this study, we compared the effects of protein deprivation in the number of parvalbumin (PV)-immunoreactive and calretinin (CR)-immunoreactive interneurons of the dentate gyrus, which are involved in the control of calcium homeostasis and fine tuning of the hippoc...
متن کاملParvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures
The subiculum is the major output area of the hippocampus. It is closely interconnected with the entorhinal cortex and other parahippocampal areas. In animal models of temporal lobe epilepsy (TLE) and in TLE patients it exerts increased network excitability and may crucially contribute to the propagation of limbic seizures. Using immunohistochemistry and in situ-hybridization we now investigate...
متن کاملLocalization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus
The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 10 شماره
صفحات -
تاریخ انتشار 1996